Login / Signup

Comparison of light-induced formation of reactive oxygen species and the membrane destruction of two mesoporphyrin derivatives in liposomes.

Barnabás Bőcskei-AntalÁdám ZolcsákNikoletta KósaIstván VoszkaGabriella CsíkKatalin TóthLevente Herényi
Published in: Scientific reports (2019)
The photodynamic effect requires the simultaneous presence of light, photosensitizer (PS) and molecular oxygen. In this process, the photoinduced damage of cells is caused by reactive oxygen species (ROS). Besides DNA, the other target of ROS is the membranes, separating internal compartments in living cells. Hence, the ability of ROS formation of porphyrins as PSs, in liposomes as simple models of cellular membranes is of outstanding interest. Earlier we compared the binding parameters and locations of mesoporphyrin IX dihydrochloride (MPCl) and mesoporphyrin IX dimethyl ester (MPE), in small unilamellar vesicles (SUV) made from various saturated phosphatidylcholines. In this study, we used the same kinds of samples for comparing the ROS forming ability. Triiodide production from potassium iodide because of light-induced ROS in the presence of molybdate catalyst was applied, and the amount of product was quantitatively followed by optical spectrometry. Furthermore, we demonstrated and carefully studied SUVs disruption as direct evidence of membrane destruction by the methods of dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS), applying unsaturated phosphatidylcholines as membrane components. Although the ROS forming ability is more pronounced in the case of MPCl, we found that the measured disruption was more effective in the samples containing MPE.
Keyphrases