DNA Origami in the Quest for Membrane Piercing.
Naresh Niranjan DhanasekarDurairaj ThiyagarajanDhiraj BhatiaPublished in: Chemistry, an Asian journal (2022)
The tool kit for label-free single-molecule sensing, nucleic acid sequencing (DNA, RNA and protein) and other biotechnological applications has been significantly broadened due to the wide range of available nanopore-based technologies. Currently, various sources of nanopores, including biological, fabricated solid-state, hybrid and recently de novo chemically synthesized ion-like channels have put in use for rapid single-molecule sensing of biomolecules and other diagnostic applications. At length scales of hundreds of nanometers, DNA nanotechnology, particularly DNA origami-based devices, enables the assembly of complex and dynamic 3-dimensional nanostructures, including nanopores with precise control over the size/shape. DNA origami technology has enabled to construct nanopores by DNA alone or hybrid architects with solid-state nanopore devices or nanocapillaries. In this review, we briefly discuss the nanopore technique that uses DNA nanotechnology to construct such individual pores in lipid-based systems or coupled with other solid-state devices, nanocapillaries for enhanced biosensing function. We summarize various DNA-based design nanopores and explore the sensing properties of such DNA channels. Apart from DNA origami channels we also pointed the design principles of RNA nanopores for peptide sensing applications.