Login / Signup

Potential of AlP and GaN as barriers in magnetic tunnel junctions.

Gokaran ShuklaHasan M AbdullahUdo Schwingenschlögl
Published in: Nanoscale (2023)
AlP and GaN are wide band gap semiconductors used industrially in light emitting diodes. We investigate their potential as tunnel barriers in magnetic tunnel junctions, employing density functional theory and the non-equilibrium Green's function method for ground state and quantum transport calculations, respectively. We show that the valence band edges are dominated by p z orbitals and the conduction band edges are dominated by s orbitals. Both materials filter Bloch states of Δ 1 symmetry at the Γ-point of the Brillouin zone. In the zero bias limit, we find for the Co/AlP/Co junction a high tunnel magnetoresistance of ∼200% at the Fermi energy and for the Co/GaN/Co junction a tunnel magnetoresistance of even ∼300% about 1.4 eV below the Fermi energy.
Keyphrases
  • density functional theory
  • molecular dynamics
  • anterior cruciate ligament reconstruction
  • single molecule
  • molecularly imprinted
  • high resolution
  • climate change
  • quantum dots
  • tandem mass spectrometry