Thermoresponsive Poly(vinyl methyl ether) (PVME) Retained by 3-Aminopropyltriethoxysilane (APTES) Network.
Elham MalekzadehBi-Min Zhang NewbyPublished in: ACS biomaterials science & engineering (2020)
Thermoresponsive polymers (TRP)s have been widely used for various applications from controlling membrane fouling in separation to cell/cell sheet harvesting in regenerative medicine. While poly(N-isopropylacrylamide) (pNIPAAm) is the most commonly used TRP, less expensive and easily processed poly(vinyl methyl ether) (PVME) also shows a hydrophilic to hydrophobic transition at 32-35 °C, near physiological conditions. In this study, we investigated the processing conditions for retaining a stable layer of PVME thin film on silica surfaces via entrapment in a 3-aminopropyltriethoxysilane (APTES) network. In addition, the thermoresponsive behaviors (TRB) of the retained PVME films were evaluated. Blend thin films of PVME/APTES with 90:10 and 50:50 mass ratios were spin-coated from their solutions in ethanol under ambient conditions and then annealed in a vacuum oven at 40, 60, 80, or 120 °C for 1, 2, or 3 days. The annealed films were then thoroughly rinsed with room temperature water and then soaked in water for 3 days. Our results showed that annealing at a temperature of ≥40 °C was necessary for retaining a PVME film on the surface. The higher annealing temperature led to greater film retention, probably due to the formation of a tighter APTES network. Regardless of processing conditions, all retained PVME films showed TRB, determined by water contact angles below and above the transition temperature of PVME. Additionally, particle attachment and protein adsorption on retained PVME films showed lower attachment or adsorption at room temperature as compared to that at 37 °C, and a greater difference was observed for the 90:10 blend where more PVME was consisted. Furthermore, human mesenchymal stem cells attached and proliferated on the retained PVME surfaces at 37 °C and rapidly detached at room temperature. These results illustrated the potential applications of PVME surfaces as thermoresponsive supports for low-fouling applications and noninvasive cell harvesting.
Keyphrases
- room temperature
- ionic liquid
- mesenchymal stem cells
- cell therapy
- single cell
- endothelial cells
- escherichia coli
- air pollution
- biofilm formation
- liquid chromatography
- bone marrow
- umbilical cord
- stem cells
- staphylococcus aureus
- small molecule
- quantum dots
- particulate matter
- amino acid
- pseudomonas aeruginosa
- gold nanoparticles
- atomic force microscopy