Login / Signup

Loading of capsaicin-in-cyclodextrin inclusion complexes into PEGylated liposomes and the inhibitory effect on IL-8 production by MDA-MB-231 and A549 cancer cell lines.

Hiba AbdelnabiWalhan Mohammad AlshaerHanan AzzamDana AlqudahAli Al-SamydaiTalal Aburjai
Published in: Zeitschrift fur Naturforschung. C, Journal of biosciences (2021)
Capsaicin (CAP) is an active component in Capsicum annuum L. known to have anti inflammatory and anticancer activity. CAP is highly lipophilic and suffers low bioavailability. Therefore, developing delivery systems that enhance solubility and bioavailability can provide more promising therapeutic applications for CAP. In the current work, CAP was complexed with β-cyclodextrin (βCD) to form capsaicin-in-β-cyclodextrin (CAP-in-βCD) inclusion complexes. Then, the CAP-in-βCD inclusion complexes were characterized and loaded into PEGylated liposomes using the thin-film hydration extrusion method. The size, charge, and polydispersity index (PDI) of the PEGylated liposomes were characterized. The levels of IL-8 production were quantified after treatment using array beads. The results of this work showed that the successful formation of inclusion complexes at 1:5 M ratio of CAP to βCD respectively. PEGylated liposomes loaded with βCD/CAP inclusion complexes (CAP-in-βCD-in-liposomes) have a hydrodynamic diameter of (181 ± 36) nm, zeta potential of (-2.63 ± 4.00) mV, encapsulation efficiency (EE) of (38.65 ± 3.70)%, drug loading (DL) of (1.65 ± 0.16)%, and a stable release profile. Both free CAP and liposomal CAP showed a significant reduction in the IL-8 production by the MDA-MB-231 and A549 cancer cell lines after treatment. In conclusion, a liposomal-based drug delivery system for CAP was achieved.
Keyphrases