Association of the fibronectin type III domain-containing protein 5 rs1746661 single nucleotide polymorphism with reduced brain glucose metabolism in elderly humans.
Ricardo A S Lima-FilhoAndréa L BenedetMarco Antônio De BastianiGuilherme PovalaDanielle CozachencoSergio T FerreiraFernanda G De FelicePedro Rosa-NetoEduardo R ZimmerMychael V Lourenconull nullPublished in: Brain communications (2023)
Fibronectin type III domain-containing protein 5 (FNDC5) and its derived hormone, irisin, have been associated with metabolic control in humans, with described FNDC5 single nucleotide polymorphisms being linked to obesity and metabolic syndrome. Decreased brain FNDC5/irisin has been reported in subjects with dementia due to Alzheimer's disease. Since impaired brain glucose metabolism develops in ageing and is prominent in Alzheimer's disease, here, we examined associations of a single nucleotide polymorphism in the FNDC5 gene (rs1746661) with brain glucose metabolism and amyloid-β deposition in a cohort of 240 cognitively unimpaired and 485 cognitively impaired elderly individuals from the Alzheimer's Disease Neuroimaging Initiative. In cognitively unimpaired elderly individuals harbouring the FNDC5 rs1746661(T) allele, we observed a regional reduction in low glucose metabolism in memory-linked brain regions and increased brain amyloid-β PET load. No differences in cognition or levels of cerebrospinal fluid amyloid-β 42 , phosphorylated tau and total tau were observed between FNDC5 rs1746661(T) allele carriers and non-carriers. Our results indicate that a genetic variant of FNDC5 is associated with low brain glucose metabolism in elderly individuals and suggest that FNDC5 may participate in the regulation of brain metabolism in brain regions vulnerable to Alzheimer's disease pathophysiology. Understanding the associations between genetic variants in metabolism-linked genes and metabolic brain signatures may contribute to elucidating genetic modulators of brain metabolism in humans.
Keyphrases
- white matter
- resting state
- metabolic syndrome
- functional connectivity
- cognitive decline
- type iii
- mild cognitive impairment
- cerebral ischemia
- cerebrospinal fluid
- genome wide
- multiple sclerosis
- insulin resistance
- cardiovascular disease
- quality improvement
- physical activity
- working memory
- skeletal muscle
- binding protein
- community dwelling
- pet ct