Redistribution of benefits but not detection in a fisheries bycatch-reduction management initiative.
Tim R McClanahanJ K KosgeiPublished in: Conservation biology : the journal of the Society for Conservation Biology (2017)
Reducing the capture of small fish, discarded fish, and bycatch is a primary concern of fisheries managers who propose to maintain high yields, species diversity, and ecosystem functions. Modified fishing gear is one of the primary ways to reduce by-catch and capture of small fish. The outcomes of gear modification may depend on competition among fishers using other similar resources and other gears in the same fishing grounds and the subsequent adoption or abandonment of modified gears by fishers. We evaluated adoption of modified gear, catch size, catch per unit effort (CPUE), yield, and fisher incomes in a coral reef fishery in which a 3-cm escape gap was introduced into traditional traps. There were 26.1 (SD 4.9) fishers who used the experimental landing sites and 228(SD 15.7) fishers who used the control landing sites annually over 7 years. The size of fish increased by 10.6% in the modified traps, but the catch of smaller fish increased by 11.2% among the other gears. There was no change in the overall CPUE, yields, or per area incomes; rather, yield benefits were redistributed in favor of the unmodified gears. For example, estimated incomes of fishers who adopted the modified traps remained unchanged but increased for net and spear fishers. Fishers using escape-gap traps had a high proportion of income from larger fish, which may have led to a perception of benefits, high status, and no abandonment of the modified traps. The commensal rather than competitive outcome may explain the continued use of escape-gap traps 3 years after their introduction. Trap fishers showed an interest in negotiating other management improvements, such as increased mesh sizes for nets, which could ultimately catalyze community-level decisions and restrictions that could increase their profits.