Snakes partition their body to traverse large steps stably.
Sean W GartThomas W MitchelChen LiPublished in: The Journal of experimental biology (2019)
Many snakes live in deserts, forests and river valleys and traverse challenging 3-D terrain such as rocks, felled trees and rubble, with obstacles as large as themselves and variable surface properties. By contrast, apart from branch cantilevering, burrowing, swimming and gliding, laboratory studies of snake locomotion have focused on locomotion on simple flat surfaces. Here, to begin to understand snake locomotion in complex 3-D terrain, we studied how the variable kingsnake, a terrestrial generalist, traversed a large step of variable surface friction and step height (up to 30% snout-vent length). The snake traversed by partitioning its body into three sections with distinct functions. Body sections below and above the step oscillated laterally on horizontal surfaces for propulsion, whereas the body section in between cantilevered in a vertical plane to bridge the large height increase. As the animal progressed, these three sections traveled down its body, conforming overall body shape to the step. In addition, the snake adjusted the partitioned gait in response to increase in step height and decrease in surface friction, at the cost of reduced speed. As surface friction decreased, body movement below and above the step changed from a continuous lateral undulation with little slip to an intermittent oscillatory movement with much slip, and initial head lift-off became closer to the step. Given these adjustments, body partitioning allowed the snake to be always stable, even when initially cantilevering but before reaching the surface above. Such a partitioned gait may be generally useful for diverse, complex 3-D terrain.