Login / Signup

A Spinel Tin Ferrite with High Lattice-Oxygen Anchored on Graphene-like Porous Carbon Networks for Lithium-Ion Batteries with Super Cycle Stability and Ultra-fast Rate Performances.

Chao-Feng PanYan-Hui SunChen-Hao SunZi-Yu WangJun-Min Nan
Published in: ACS applied materials & interfaces (2022)
A new type of nano-SnFe 2 O 4 with stable lattice-oxygen and abundant surface defects anchored on ultra-thin graphene-like porous carbon networks (SFO@C) is prepared for the first time by an interesting freezing crystallization salt template method. The functional composite has excellent rate performance and long-term cycle stability for lithium-ion battery (LIB) anodes due to the stable structure, improved conductivity, and shortened migrating distance for lithium-ions, which are derived from the higher lattice-oxygen of SnFe 2 O 4 , abundant porous carbon networks and surface defects, and smaller nanoparticles. Under the ultra-high current density of 10, 15, and 20 A g -1 cycling for 1000 times, the SFO@C can provide high reversible capacities of 522.2, 362.5, and 361.1 mAh g -1 , respectively. The lithium-ion storage mechanism of the composite was systematically studied for the first time by in situ X-ray diffraction (XRD), ex situ XRD and scanning electron microscopy (SEM), and density functional theory (DFT) calculations. The results indicate that the existence of Li 2 O and metallic Fe during the lithiation/delithiation process is a key reason for reducing the initial lithium-ion storage reversibility but increasing the rate performance and capacity stability in the subsequent cycles. DFT calculations show that lithium-ions are more easily adsorbed on the (111) crystal plane with a much lower adsorption energy of -7.61 eV than other planes, and the Fe element is the main acceptor of electrons. Moreover, the kinetics investigation indicates that the lithium-ion intercalation and deintercalation in SFO@C are mainly controlled by the pseudocapacitance behavior, which is favorable to enhancing the rate performance. The research provides a new strategy for designing LIB electrode materials with a stable structure and outstanding lithium-ion storage performance.
Keyphrases