Login / Signup

Mechanosensitive ion channels in glaucoma pathophysiology.

Julian Garcia-SanchezDanting LinWendy W Liu
Published in: Vision research (2024)
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Keyphrases
  • optic nerve
  • optical coherence tomography
  • cell death
  • cell cycle arrest
  • gene expression
  • mental health
  • genome wide
  • copy number
  • dna methylation
  • oxidative stress
  • single molecule
  • signaling pathway
  • pi k akt