Login / Signup

Hierarchical Nano/Micro Moth Eyelike Polymer Film Using Solid/Liquid Interfacial Reaction at Room Temperature.

Thuy T CaoHiroshi YabuDo-Sung Huh
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
A simple pathway for the fabrication of real moth eyelike patterned (MEP) polymer film with a double-layered nano/microhierarchical structure is demonstrated through a solid/liquid interfacial reaction at atmospheric conditions. A convex-structured polyvinyl alcohol (PVA) film containing CdCl2 was first fabricated using a self-organized honeycomb-patterned porous film as a template. The CdCl2/PVA convex film was immersed into Na2S/ethanol solution to facilitate the reaction between CdCl2 and Na2S at the solid/liquid interface, which led to the functionalization of CdS nanoparticles in the convex-structured PVA film. The tunable introduction of interfacial reaction resulted in the formation of a CdS moth eyelike nanoarray on the top surface of the PVA convex microarray, which mimicked the real moth eye (PVA-CdS MEP). PVA-CdS MEP film with a double moth eyelike structure showed improved antireflective property in comparison with flat and convex-structured PVA films. The PVA-CdS MEP film showed photoresponse under simulated solar light radiation and flexible duration after 500 cycles of folding.
Keyphrases
  • room temperature
  • ionic liquid
  • quantum dots
  • reduced graphene oxide
  • electron transfer
  • molecular dynamics simulations
  • mass spectrometry
  • single molecule
  • high resolution
  • particulate matter