Login / Signup

Highly Stretchable PU Ionogels with Self-Healing Capability for a Flexible Thermoelectric Generator.

Junhuai XuHui WangXiaosheng DuXu ChengZongliang DuGongyan Liu
Published in: ACS applied materials & interfaces (2021)
With the development of thermoelectric (TE) generator, the flexible, stretchable, self-healable, and wearable TE devices have aroused great interest. Therefore, we designed a self-healable and stretchable polyurethane (PU) ionogel, composed of polyurethane main chains with double bonds in the side, cross-linkers (BDB) and nonconjugated ionic liquids (EMIM:DCA). The PU ionogels with 30 wt % ILs have a high mechanical stretchability (300%), good tensile strength (1.61 MPa), and suitable Young's modulus (0.79 MPa). The proposed materials also exhibited an excellent ionic figure of merit (ZTi) of 0.99 ± 0.3, as well as rapid self-healability in the absence of any external stimuli. The thermoelectric capability of PU ionogels kept stable under the severe condition (50% strain) and during self-healing process, which is rarely reported in recent studies. Furthermore, a stretchable and self-healable ionic thermoelectric capacitor device is also fabricated by the PU ionogels, which can efficiently convert heat into electricity.
Keyphrases
  • ionic liquid
  • room temperature
  • blood pressure
  • sensitive detection