Login / Signup

A distributed lumped parameter model of blood flow with fluid-structure interaction.

Ryan J PewowarukAlejandro Roldán-Alzate
Published in: Biomechanics and modeling in mechanobiology (2021)
A distributed lumped parameter (DLP) model of blood flow was recently developed that can be simulated in minutes while still incorporating complex sources of energy dissipation in blood vessels. The aim of this work was to extend the previous DLP modeling framework to include fluid-structure interactions (DLP-FSI). This was done by using a simple compliance term to calculate pressure that does not increase the simulation complexity of the original DLP models. Verification and validation studies found DLP-FSI simulations had good agreement compared to analytical solutions of the wave equations, experimental measurements of pulsatile flow in elastic tubes, and in vivo MRI measurements of thoracic aortic flow. This new development of DLP-FSI allows for significantly improved computational efficiency of FSI simulations compared to FSI approaches that solve the full 3D conservation of mass and momentum equations while also including the complex sources of energy dissipation occurring in cardiovascular flows that other simplified models neglect.
Keyphrases