eLIMS: Ensemble Learning-Based Spatial Segmentation of Mass Spectrometry Imaging to Explore Metabolic Heterogeneity.
Mudassir ShahLei GuoXiangnan XuLingli DengKeyi LuJi-Yang DongChao ZhaoJingjing XuPublished in: Journal of proteome research (2024)
Spatial segmentation is an essential processing method for image analysis aiming to identify the characteristic suborgans or microregions from mass spectrometry imaging (MSI) data, which is critical for understanding the spatial heterogeneity of biological information and function and the underlying molecular signatures. Due to the intrinsic characteristics of MSI data including spectral nonlinearity, high-dimensionality, and large data size, the common segmentation methods lack the capability for capturing the accurate microregions associated with biological functions. Here we proposed an ensemble learning-based spatial segmentation strategy, named eLIMS, that combines a randomized unified manifold approximation and projection (r-UMAP) dimensionality reduction module for extracting significant features and an ensemble pixel clustering module for aggregating the clustering maps from r-UMAP. Three MSI datasets are used to evaluate the performance of eLIMS, including mouse fetus, human adenocarcinoma, and mouse brain. Experimental results demonstrate that the proposed method has potential in partitioning the heterogeneous tissues into several subregions associated with anatomical structure, i.e., the suborgans of the brain region in mouse fetus data are identified as dorsal pallium, midbrain, and brainstem. Furthermore, it effectively discovers critical microregions related to physiological and pathological variations offering new insight into metabolic heterogeneity.
Keyphrases
- convolutional neural network
- mass spectrometry
- single cell
- high resolution
- deep learning
- electronic health record
- rna seq
- liquid chromatography
- spinal cord
- gene expression
- healthcare
- squamous cell carcinoma
- endothelial cells
- magnetic resonance
- computed tomography
- health information
- dna methylation
- risk assessment
- neuropathic pain
- single molecule
- genome wide
- machine learning
- cerebral ischemia
- induced pluripotent stem cells
- fluorescence imaging