Login / Signup

Dynamic Coassembly of Amphiphilic Block Copolymer and Polyoxometalates in Dual Solvent Systems: An Efficient Approach to Heteroatom-Doped Semiconductor Metal Oxides with Controllable Nanostructures.

Yuan RenWenhe XieYanyan LiYuanyuan CuiChao ZengKaiping YuanLimin WuYonghui Deng
Published in: ACS central science (2022)
Dynamic coassembly of block copolymers (BCPs) with Keggin-type polyoxometalates (POMs) is developed to synthesize heteroatom-doped tungsten oxide with controllable nanostructures, including hollow hemispheres, nanoparticles, and nanowires. The versatile coassembly in dual n- hexane/THF solvent solution enables the fomation of poly(ethylene oxide)- b -polystyrene (PEO- b -PS)/POMs ( e.g ., silicotungstic acid, H 4 SiW 12 O 40 ) nanocomposites with different morphologies such as spherical vesicles, inverse spherical micelles, and inverse cylindrical micelles, which can be readily converted into diverse nanostructured metal oxides with high surface area and unique properties via in situ thermal-induced structural evolution. For example, uniform silicon-doped WO 3 (Si-WO 3 ) hollow hemispheres derived from coassembly of PEO- b -PS with H 4 SiW 12 O 40 were utilized to fabricate gas sensing devices which exhibit superior gas sensing performance toward acetone, thanks to the selective gas-solid interface catalytic reaction that induces resistance changes of the devices due to the high specific surface areas, abundant oxygen vacancies, and the Si-doping induced metastable ε- phase of WO 3 . Furthermore, density functional theory (DFT) calculation reveals the mechanism about the high sensitivity and selectivity of the gas sensors. On the basis of the as-fabricated devices, an integrated gas sensor module was constructed, which is capable of real-time monitoring the environmental acetone concentration and displaying relevant sensing results on a smart phone via Bluetooth communication.
Keyphrases