Login / Signup

Minor N-Glycan Mapping of Monoclonal Antibody Therapeutics Using Middle-Down NMR Spectroscopy.

You ZhuoDavid A KeireKang Chen
Published in: Molecular pharmaceutics (2020)
The N-glycosylation pattern of Asn-297 may have impacts on monoclonal antibody (mAb) drug plasma clearance, antibody-dependent cell mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). Notably, the changes in the relative abundance of certain minor glycans, like the afucosylation, high-mannose, or galactosylation are known to change mAb properties and functions. Here, a middle-down NMR spectroscopy based analytical procedure was applied to assess the composition and structure of glycans on adalimumab and trastuzumab without glycan cleavage from the mAbs. The anomeric 2D 1H-13C spectra showed distinct patterns that could be used to profile and differentiate mAb glycan compositions. Specifically, the anomeric C1/H1 resonances from N-acetylglucosamine (GlcNAc2 and -5) and mannose (Man4) were identified as characteristic peaks for key glycan anomeric linkages and branching states. They were also utilized for measuring the relative abundance of minor glycans of total afucosylation (aFuc%), high mannose (HM%), and branch specific galactosylation (Gal1-3% and Gal1-6%). The obtained total aFuc% value of 11-12% was similar between the two mAbs; however, trastuzumab had significantly lower level of high mannose and a higher level of galactosylation than adalimumab. Overall, the 2D-NMR measurements provided functionally relevant mAb glycan composition and structure information. The method was deemed fit-for-purpose for assessment of these mAb quality attributes and involved fewer chemical preparation steps than the classical approaches that cleave glycans prior to making measurements.
Keyphrases