Login / Signup

Divergent Cellular Energetics, Glutamate Metabolism, and Mitochondrial Function Between Human and Mouse Cerebral Cortex.

Emil W WestiEmil JakobsenCaroline M VossLasse K BakLars H PinborgBlanca I AldanaJens V Andersen
Published in: Molecular neurobiology (2022)
Disruptions of brain energy and neurotransmitter metabolism are associated with several pathological conditions including neurodegenerative diseases such as Alzheimer's disease. Transgenic rodent models, and in vitro preparations hereof, are often applied for studying pathological aspects of brain metabolism. However, despite the conserved cerebral development across mammalian species, distinct differences in cellular composition and structure may influence metabolism of the rodent and human brain. To address this, we investigated the metabolic function of acutely isolated brain slices and non-synaptic mitochondria obtained from the cerebral cortex of mice and neurosurgically resected neocortical tissue of humans. Utilizing dynamic isotope labeling with 13 C-enriched metabolic substrates, we show that metabolism of glucose, acetate, β-hydroxybutyrate, and glutamine operates at lower rates in human cerebral cortical slices when compared to mouse slices. In contrast, human cerebral cortical slices display a higher capacity for converting exogenous glutamate into glutamine, which subsequently supports neuronal GABA synthesis, whereas mouse slices primarily convert glutamate into aspartate. In line with the reduced metabolic rate of the human brain slices, isolated non-synaptic mitochondria of the human cerebral cortex have a lower oxygen consumption rate when provided succinate as substrate. However, when provided pyruvate and malate, human mitochondria display a higher coupled respiration and lower proton leak, signifying a more efficient mitochondrial coupling compared to mouse mitochondria. This study reveals key differences between mouse and human brain metabolism concerning both neurons and astrocytes, which must be taken into account when applying in vitro rodent preparations as a model system of the human brain.
Keyphrases