Login / Signup

Comparison of Two Solid-Phase Extraction (SPE) Methods for the Identification and Quantification of Porcine Retinal Protein Markers by LC-MS/MS.

Carsten SchmelterSebastian FunkeJana TremlAnja BeschnittNatarajan PerumalCaroline ManicamNorbert PfeifferFranz H Grus
Published in: International journal of molecular sciences (2018)
Proper sample preparation protocols represent a critical step for liquid chromatography-mass spectrometry (LC-MS)-based proteomic study designs and influence the speed, performance and automation of high-throughput data acquisition. The main objective of this study was to compare two commercial solid-phase extraction (SPE)-based sample preparation protocols (comprising SOLAµTM HRP SPE spin plates from Thermo Fisher Scientific and ZIPTIP® C18 pipette tips from Merck Millipore) for analytical performance, reproducibility, and analysis speed. The house swine represents a promising animal model for studying human eye diseases including glaucoma and provides excellent requirements for the qualitative and quantitative MS-based comparison in terms of ocular proteomics. In total six technical replicates of two protein fractions [extracted with 0.1% dodecyl-ß-maltoside (DDM) or 1% trifluoroacetic acid (TFA)] of porcine retinal tissues were subjected to in-gel trypsin digestion and purified with both SPE-based workflows (N = 3) prior to LC-MS analysis. On average, 550 ± 70 proteins (1512 ± 199 peptides) and 305 ± 48 proteins (806 ± 144 peptides) were identified from DDM and TFA protein fractions, respectively, after ZIPTIP® C18 purification, and SOLAµTM workflow resulted in the detection of 513 ± 55 proteins (1347 ± 180 peptides) and 300 ± 33 proteins (722 ± 87 peptides), respectively (FDR < 1%). Venn diagram analysis revealed an average overlap of 65 ± 2% (DDM fraction) and 69 ± 4% (TFA fraction) in protein identifications between both SPE-based methods. Quantitative analysis of 25 glaucoma-related protein markers also showed no significant differences (P > 0.05) regarding protein recovery between both SPE methods. However, only glaucoma-associated marker MECP2 showed a significant (P = 0.02) higher abundance in ZIPTIP®-purified replicates in comparison to SOLAµTM-treated study samples. Nevertheless, this result was not confirmed in the verification experiment using in-gel trypsin digestion of recombinant MECP2 (P = 0.24). In conclusion, both SPE-based purification methods worked equally well in terms of analytical performance and reproducibility, whereas the analysis speed and the semi-automation of the SOLAµTM spin plates workflow is much more convenient in comparison to the ZIPTIP® C18 method.
Keyphrases