Login / Signup

Surface Engineering of Two-Dimensional Black Phosphorus for Advanced Nanophotonics.

Weichun HuangYuming YangQizhen Zhang
Published in: Accounts of chemical research (2024)
ConspectusEverything in the world has two sides. We should correctly understand its two sides to pursue the positive side and get rid of the negative side. Recently, two-dimensional (2D) black phosphorus (BP) has received a tremendous amount of attention and has been applied for broad applications in optoelectronics, transistors, logic devices, and biomedicines due to its intrinsic properties, e.g., thickness-dependent bandgap, high mobility, highly anisotropic charge transport, and excellent biodegradability and biocompatibility. On one hand, rapid degradation of 2D BP under ambient conditions becomes a vital bottleneck that largely hampers its practical applications in optical and optoelectronic devices and photocatalysis. On the other hand, just because of its ambient instability, 2D BP as a novel kind of nanomedicine in a cancer drug delivery system can not only satisfy effective cancer therapy but also enable its safe biodegradation in vivo . Until now, a variety of surface functionality types and approaches have been employed to rationally modify 2D BP to meet the growing requirements of advanced nanophotonics.In this Account, we describe our research on surface engineering of 2D BP in two opposite ways: (i) stabilizing 2D BP by various approaches for advanced nanophotonic devices with both remarkable photoresponse behavior and environmentally structural stability and (ii) making full use of biodegradation, biocompatibility, and biological activity (e.g., photothermal therapy, photodynamic therapy, and bioimaging) of 2D BP for the construction of high-performance delivery nanoplatforms for biophotonic applications. We highlight the targeted aims of the surface-engineered 2D BP for advanced nanophotonics, including photonic devices (optics, optoelectronics, and photocatalysis) and photoinduced cancer therapy, by means of various surface functionalities, such as heteroatom incorporation, polymer functionalization, coating, heterostructure design, etc. From the viewpoint of potential applications, the fundamental properties of surface-engineered 2D BP and recent advances in surface-engineered 2D BP-based nanophotonic devices are briefly discussed. For the photonic devices, surface-engineered 2D BP can not only effectively improve environmentally structural stability but also simultaneously maintain photoresponse performance, enabling 2D BP-based devices for a wide range of practical applications. In terms of the photoinduced cancer therapy, surface-engineered 2D BP is more appropriate for the treatment of cancer due to negligible toxicity and excellent biodegradation and biocompatibility. We also provide our perspectives on future opportunities and challenges in this important and fast-growing field. It is envisioned that this Account can attract more attention in this area and inspire more scientists in a variety of research communities to accelerate the development of 2D BP for more widespread high-performance nanophotonic applications.
Keyphrases