Login / Signup

Suppression of Aggregation of Therapeutic Monoclonal Antibodies during Storage by Removal of Aggregation Precursors Using a Specific Adsorbent of Non-Native IgG Conformers.

Yukako SengaShinya Honda
Published in: Bioconjugate chemistry (2018)
The quality of preparations of therapeutic IgG molecules, widely used for the treatment of various diseases, should be maintained during storage and administration. Nevertheless, recent studies demonstrate that IgG aggregation is one of the most critical immunogenicity risk factors that compromises safety and efficacy of therapeutic IgG molecules in the clinical setting. During the IgG manufacturing process, 0.22-μm membrane filters are commonly used to remove aggregates. However, particles with a diameter below 0.22 μm (small aggregates) are not removed from the final product. The residual species may grow into large aggregates during the storage period. In the current study, we devised a strategy to suppress IgG aggregate growth by removing aggregation precursors using the artificial protein AF.2A1. This protein efficiently binds the Fc region of non-native IgG conformers generated under chemical and physical stresses. Magnetic beads conjugated with AF.2A1 were used to remove non-native monomers and aggregates from solutions of native IgG and from native IgG solutions spiked with stressed IgG. The time-dependent growth of aggregates after the removal treatment was monitored. The removal of aggregation precursors, i.e., non-native monomers and nanometer aggregates (<100 nm), suppressed the aggregate growth. The presented findings demonstrate that a removal treatment with a specific adsorbent of non-native IgG conformers enables long-term stable storage of therapeutic IgG molecules and will facilitate mitigation of the immunogenicity of IgG preparations.
Keyphrases
  • photodynamic therapy
  • atrial fibrillation
  • physical activity
  • combination therapy
  • binding protein
  • smoking cessation
  • genetic diversity