Login / Signup

Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation.

Young Geun SongYoung-Seok ShimJun Min SuhMyoung-Sub NohGwang Su KimKyoung Soon ChoiBeomgyun JeongSangtae KimHo Won JangByeong-Kwon JuChong-Yun Kang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2019)
The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic-activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub-parts-per-trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic-activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.
Keyphrases
  • room temperature
  • ionic liquid
  • low cost
  • working memory
  • solid state
  • quantum dots