Increasing the Efficiency of Photocatalytic Water Splitting via Introducing Intermediate Bands.
Xinbo MaWenjun ChuYouxi WangZhenyu LiJinglong YangPublished in: The journal of physical chemistry letters (2023)
Photocatalytic water splitting is a potential way to utilize solar energy. To be practically useful, it is important to have a high solar-to-hydrogen (STH) efficiency. In this study, we propose a conceptually new photocatalytic water splitting model based on intermediate bands (IBs). In this new model, introducing IBs within the band gap can significantly increase the STH efficiency limit (from 30.7% to 48.1% without an overpotential and from 13.4% to 36.2% with overpotentials) compared to that in conventional single-band gap photocatalytic water splitting. First-principles calculations indicate that N-doped TiO 2 , Bi-doped TiO 2 , and P-doped ZnO have suitable IBs that can be used to construct IB photocatalytic water splitting systems. The STH efficiency limits of these three doped systems are 10.0%, 12.0%, and 19.0%, respectively, while those of pristine TiO 2 and ZnO without IB are only 0.9% and 1.6%, respectively. The IB photocatalytic water splitting model proposed in this study opens a new avenue for photocatalytic water splitting design.