Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population.
Hayat AljaibejiAbdul Khader MohammedSami AlkayyaliMahmood Yaseen HachimHind HasswanWaseem El-HuneidiJalal TaneeraNabil SulaimanPublished in: Genes (2020)
Phosphatidylinositol-specific phospholipase C X domain 3 (PLCXD3) has been shown to influence pancreatic β-cell function by disrupting insulin signaling. Herein, we investigated two genetic variants in the PLCXD3 gene in relation to type 2 diabetes (T2D) or metabolic syndrome (MetS) in the Emirati population. In total, 556 adult Emirati individuals (306 T2D and 256 controls) were genotyped for two PLCXD3 variants (rs319013 and rs9292806) using TaqMan genotyping assays. The frequency distribution of minor homozygous CC genotype of rs9292806 and GG genotype of rs319013 were significantly higher in subjects with MetS compared to Non-MetS (p < 0.01). The minor homozygous rs9292806-CC and rs319013-GG genotypes were significantly associated with increased risk of MetS (adj. OR 2.92; 95% CI 1.61-5.3; p < 0.001) (adj. OR 2.62; 95% CI 1.42-4.83; p = 0.002), respectively. However, no associations were detected with T2D. In healthy participants, the homozygous minor genotypes of both rs9292806 and rs319013 were significantly higher fasting glucose (adj. p < 0.005), HbA1c (adj. p < 0.005) and lower HDL-cholesterol (adj. p < 0.05) levels. Data from T2D Knowledge Portal database disclosed a nominal association of rs319013 and rs9292806 with T2D and components of MetS. Bioinformatics prediction analysis showed a deleterious effect of rs9292806 on the regulatory regions of PLCXD3. In conclusion, this study identifies rs319013 and rs9292806 variants of PLCXD3 as additional risk factors for MetS in the Emirati population.