Potential Application of the WST-8-mPMS Assay for Rapid Viable Microorganism Detection.
Cheng-Han ChenYu-Hsiang LiaoMichael MuljadiTsai-Te LuChao-Min ChengPublished in: Pathogens (Basel, Switzerland) (2023)
To ensure clean drinking water, viable pathogens in water must be rapidly and efficiently screened. The traditional culture or spread-plate process-the conventional standard for bacterial detection-is laborious, time-consuming, and unsuitable for rapid detection. Therefore, we developed a colorimetric assay for rapid microorganism detection using a metabolism-based approach. The reaction between a viable microorganism and the combination of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt (WST-8) and 1-methoxy-5-methylphenazinium methyl sulfate (mPMS) results in a color change. In combination with a microplate reader, WST-8-mPMS reactivity was leveraged to develop a colorimetric assay for the rapid detection of various bacteria. The detection limit of the WST-8-mPMS assay for both gram-negative and gram-positive bacteria was evaluated. This WST-8-mPMS assay can be used to perform colorimetrical semi-quantitative detection of various bacterial strains in buffers or culture media within 1 h without incubation before the reaction. The easy-to-use, robust, rapid, and sensitive nature of this novel assay demonstrates its potential for practical and medical use for microorganism detection.