Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing.
Xiaoxia MaoGuifang ChenZihan WangYuanguang ZhangXiaoli ZhuGenxi LiPublished in: Chemical science (2017)
Hydrogels are of great interest in the field of biosensing for their good biocompatibility, plasticity, and capability of providing 3D scaffolds. Nevertheless, the application of hydrogels has not been linked with broad surface biosensing systems yet. To overcome the limitations, here for the first time, surface-immobilized pure DNA hydrogels were synthesized using a surficial primer-induced strategy and adopted for biosensing applications. The DNA hydrogel 3D scaffold is successfully constructed on a transparent ITO electrode, which facilitates both colourimetric and electrochemical measurements. Results show that the hydrogel is able to wrap enzymes solidly and exhibits favourable stability under different conditions. Owing to the free diffusion of the micromolecular targets throughout the hydrogel, while isolating the enzymes from the macromolecular interferences outside the hydrogel, the direct colourimetric and electrochemical detection of hydrogen peroxide and bilirubin in serum is achieved. The detection limit of hydrogen peroxide in serum is 22 nM by colourimetric analysis and 13 nM by electrochemical measurement. The detection limit of bilirubin is 32 nM, a favourable limit that could be used in jaundice diagnosis. In addition, the enzyme@hydrogel can be easily regenerated and the catalytic activity is retained for a few cycles, thus allowing the recycling of the hydrogel-based biosensing system. The successful integration of DNA hydrogels with surface biosensing systems will greatly expand the applications of hydrogels for diagnostic and environmental monitoring purposes.
Keyphrases
- tissue engineering
- label free
- hydrogen peroxide
- hyaluronic acid
- drug delivery
- circulating tumor
- wound healing
- cell free
- nitric oxide
- single molecule
- photodynamic therapy
- ionic liquid
- drug release
- gold nanoparticles
- nucleic acid
- mass spectrometry
- risk assessment
- molecularly imprinted
- high glucose
- loop mediated isothermal amplification