Login / Signup

Mimicking functional elements of the natural flow regime promotes native fish recovery in a regulated river.

Ethan M BaruchSarah M YarnellTheodore E GranthamJessica R AyersAndrew L RypelRobert A Lusardi
Published in: Ecological applications : a publication of the Ecological Society of America (2024)
Streamflow regimes that maintain vital functions and processes of aquatic ecosystems are critical to sustaining ecosystem health. In rivers with altered flow regimes, restoring components of the natural flow regime is predicted to conserve freshwater biodiversity by supporting ecological functions and geomorphological processes to which native communities are adapted. However, the effectiveness of environmental flow restoration is poorly understood because of inadequate monitoring and uncertainty in ecological responses to managed changes in specific, quantifiable aspects of the annual streamflow regime. Here, we used time series models to analyze 25 years of fish assemblage data collected before and after environmental flow implementation in a dammed river in California, USA. We examined the response of the fish community to changes in individual components of the flow regime known to support ecosystem functions. We found that as functional flow components shifted toward their predicted natural range, the quasi-extinction risk (likelihood of population declines of >80%) decreased for the native fish assemblage. Following environmental flow implementation, observed changes toward natural ranges of dry season duration, fall pulse flow magnitude, and wet season timing each reduced quasi-extinction risk by at least 40% for the native assemblage. However, functional flow components that shifted away from their predicted natural range, including lower spring recession flows and higher dry season baseflow, resulted in greater quasi-extinction risk for native species. In contrast, non-native species decreased in abundance when flow components shifted toward predicted natural ranges and increased when components shifted away from their natural range. Although most functional flow components remained outside of their natural range following environmental flow implementation, our results indicate that even moderate shifts toward a natural flow regime can benefit native and suppress non-native fish species. Overall, this study provides the most compelling evidence to date of the effectiveness of functional environmental flows in supporting native fish recovery in a highly regulated river.
Keyphrases
  • healthcare
  • human health
  • climate change
  • risk assessment
  • blood pressure
  • quality improvement
  • deep learning
  • artificial intelligence
  • life cycle
  • wastewater treatment
  • water quality
  • health information
  • health promotion