Login / Signup

Quantum dot-based sensitive detection of disease specific exosome in serum.

Kseniia BoriachekMd Nazmul IslamVinod GopalanAlfred King-Yin LamNam-Trung NguyenMohammad J A Shiddiky
Published in: The Analyst (2017)
Tumor-derived exosomes have emerged as promising cancer biomarkers due to their unique composition and functions. Herein, we report a stripping voltammetric immunoassay for the electrochemical detection of disease-specific exosomes using quantum dots as signal amplifiers. The assay involves three subsequent steps where bulk exosome populations are initially magnetically captured on magnetic beads by a generic tetraspanin antibody (e.g., CD9 or CD63) followed by the identification of disease-specific exosomes using cancer-related. Here, we used CdSe quantum dot (CdSeQD) functionalised-biotinylated HER-2 and FAM134B antibodies as breast and colon cancer markers. After magnetic washing and purification steps, acid dissolution of CdSeQDs and subsequent anodic stripping voltammetric quantification of Cd2+ were carried out at the bare glassy carbon working electrode. This method enabled sensitive detection of 100 exosomes per μL with a relative standard deviation (%RSD) of <5.5% in cancer cell lines and a small cohort of serum samples (n = 9) collected from patients with colorectal adenocarcinoma. We believe that our approach could potentially represent an effective bioassay for the quantification of disease-specific exosomes in clinical samples.
Keyphrases