Phenolic compounds as potential adenosine deaminase inhibitors: molecular docking and dynamics simulation coupled with MM-GBSA calculations.
Abdullahi Ibrahim UbaNicholas Joseph ParadisChun WuMuhammad Imran TousifPublished in: Amino acids (2023)
Adenosine deaminase (ADA) is a Zn 2+ -containing enzyme that catalyzes the irreversible deamination of adenosine to inosine or deoxyadenosine to deoxyinosine. In addition to this enzymatic function, ADA mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. ADA is implicated in cardiovascular pathologies such as atherosclerosis and certain types of cancers, including lymphoma and leukemia. To date, only two drugs (pentostatin and cladribine) have been approved for the treatment of hairy cell leukemia. In search of natural ADA inhibitors, we demonstrated the binding of selected phenolic compounds to the active site of ADA using molecular docking and molecular dynamics simulation. Our results show that phenolic compounds (chlorogenic acid, quercetin, and hyperoside) stabilized the ADA complex by forming persistent interactions with the catalytically essential Zn 2+ ion. Furthermore, MM-GBSA ligand binding affinity calculations revealed that hyperoside had a comparable binding energy score (ΔG = - 46.56 ± 8.26 kcal/mol) to that of the cocrystal ligand in the ADA crystal structure (PDB ID: 1O5R) (ΔG = - 51.97 ± 4.70 kcal/mol). Similarly, chlorogenic acid exhibited a binding energy score (ΔG = - 18.76 ± 4.60 kcal/mol) comparable to those of the two approved ADA inhibitor drugs pentostatin (ΔG = - 14.54 ± 2.25 kcal/mol) and cladribine (ΔG = - 25.52 ± 4.10 kcal/mol) while quercetin was found to have modest binding affinity (ΔG = - 8.85 ± 7.32 kcal/mol). This study provides insights into the possible inhibitory potential of these phenolic compounds against ADA.
Keyphrases
- molecular docking
- molecular dynamics simulations
- single cell
- cell therapy
- cardiovascular disease
- bone marrow
- density functional theory
- dna binding
- heavy metals
- stem cells
- diffuse large b cell lymphoma
- molecular dynamics
- mesenchymal stem cells
- binding protein
- risk assessment
- protein kinase
- mass spectrometry
- hydrogen peroxide
- human health
- drug administration
- smoking cessation