Microgel-Modified Bilayered Hydrogels Dramatically Boosting Load-Bearing and Lubrication.
Peng LinDanni FuTingting ZhangShuanhong MaFeng ZhouPublished in: ACS macro letters (2023)
Hydrogel-based articular cartilage replacement materials are promising candidates for their potential to provide both high load-bearing capacity and low friction performance, similar to natural cartilage. Nevertheless, the design of these materials presents a significant challenge in reconciling the conflicting demands of the load-bearing capacity and lubrication. Despite extensive research in this area, there is still room for improvement in the creation of hydrogel-based materials that effectively meet these demands. Herein, a facile strategy is provided to realize simultaneously high load-bearing and low friction properties on the proposed hydrogel by modifying the surface of mechanically strong annealled PVA-PAAc hydrogel with a high hydration potential PAAm- co -PAMPS microgel. Consequently, a bilayer hydrogel with a porous surface and a compact substrate has been obtained. Compressive experiments confirmed that the bilayer hydrogel exhibited excellent mechanical strength with a compressive strength of 32.23 MPa at 90% strain. A high load-bearing (applied load up to 30 N), extremely low friction coefficiency (0.01-0.05) and excellent wear resistance (COF low to 0.03 after a 4 h test at 10 N using a steel ball as the contact pair) are successfully achieved. These findings provide new perspectives for the design of articular cartilage materials.