Environmental gut bacteria in European honey bees (Apis mellifera) from Australia and their relationship to the chalkbrood disease.
Sheba KhanDoug SomervilleMichael FreseMurali NayuduPublished in: PloS one (2020)
We report on aerobic "environmental" bacteria isolated from European honey bees (Apis mellifera). We determined the number of culturable aerobic bacteria in the gut of nurse bees sampled from locations around Australia. Bees from healthy colonies had 107-108 aerobic bacteria per g of bee gut, while bees from colonies with chalkbrood consistently had significantly fewer bacteria (104-105 bacteria per g). When colonies recovered from chalkbrood, bacterial numbers returned to normal levels, suggesting that counting aerobic bacteria in the gut could be used to predict an outbreak of the disease. Furthermore, Western Australian bees from the "Better Bees" program (bred to promote hygienic behaviour) had significantly higher numbers of aerobic gut bacteria compared to regular bees from healthy colonies. Bacteria with the ability to inhibit the chalkbrood pathogen were found in most bees from regular colonies (> 60%) but only in a few "Better Bees" (10%). Phylogenetic analysis of aerobic bacterial isolates that inhibited the chalkbrood pathogen revealed a close relationship (>97% sequence identity) to the genera Bacillus, Klebsiella, Pantoea, Hafnia, and Enterobacter (bacteria that have previously been isolated from honey bees), but we also isolated Maccrococcus and Frigoribacterium species (bacteria that were not previously identified in bees). Finally, we investigated the ability of bacteria to inhibit the chalkbrood fungus Ascosphaera apis. Mass spectroscopy analysis revealed that the bee gut isolates Frigoribacterium sp. and Bacillus senegalensis produce gluconic acid. We further found that this simple sugar is involved in chalkbrood fungal hyphal lysis and cytoplasmic leakage. Our findings suggest that "environmental" gut bacteria may help bees to control the chalkbrood pathogen.