Graphene Oxide and Its Derivatives as Adsorbents for PFOA Molecules.
Xin WangHongwei ZhangSeokgyun HamRui QiaoPublished in: The journal of physical chemistry. B (2023)
Effective, low-cost adsorbents are needed to remove perfluoroalkyl and polyfluoroalkyl substances (PFAS) from water sources. Carbon-based materials are promising PFAS adsorbents. Here, we explore the potential of graphite oxide (GO) and its derivatives as PFAS adsorbents by studying the adsorption of perfluorooctanoic acid (PFOA), a model PFAS molecule, on GO surfaces with O/C ratios up to 16.7% using molecular dynamics simulations. An adsorption free energy of approximately -30 kJ/mol (or -310 meV) is obtained for pristine graphene in pure water, and adsorbed PFOA molecules diffuse rapidly. As the O/C ratio increases, hydrophobic interactions' contribution to PFOA adsorption diminishes, but that by electrostatic interactions becomes important. Overall, adsorption is weakened, but favorable adsorption still occurs at an O/C ratio of 16.7%. The in-plane diffusion coefficient of adsorbed PFOA molecules decreases by more than 45 times as the O/C ratio increases to 8.3% but increases significantly when the O/C ratio increases further to 16.7%. Adding salt improves the adsorption owing to the salting-out and screening effects but slows the diffusion of adsorbed PFOA molecules, and these effects are more pronounced at low O/C ratios. These results show that GOs are effective PFOA adsorbents. Such effectiveness, along with GO's potentially low cost and the possibility of regenerating spent GO by removing adsorbed PFOA molecules through a mild electrical potential, makes GO a promising adsorbent for PFOA and similar molecules. The insights from the present study can help the rational design of GOs to realize their full potential.