Login / Signup

Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells.

Shuang LiuQiuxin ZhangAdrianna N ShyMeihui YiHongjian HeShijiang LuBing Xu
Published in: Journal of the American Chemical Society (2021)
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Keyphrases
  • induced pluripotent stem cells
  • induced apoptosis
  • cell cycle arrest
  • oxidative stress
  • drug delivery
  • stem cells
  • cell proliferation
  • hydrogen peroxide
  • cancer therapy
  • nitric oxide
  • cell therapy