Login / Signup

Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

Diego ColombaraFlorian WernerTorsten SchwarzIngrid C InfanteYves FlemingNathalie ValleConrad SpindlerErica VacchieriGermain ReyMael GuennouMuriel BouttemyAlba Garzón ManjónInmaculada Peral AlonsoMichele MelchiorreBrahime El AdibBaptiste GaultDierk RaabePhillip J DaleSusanne Siebentritt
Published in: Nature communications (2018)
Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se2 and Cu(In,Ga)3Se5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.
Keyphrases
  • solar cells
  • pet ct
  • room temperature
  • aqueous solution
  • gold nanoparticles
  • perovskite solar cells