Login / Signup

Descriptors of intrinsic hydrodynamic thermal transport: screening a phonon database in a machine learning approach.

Pol TorresStephen WuShenghong JuChang LiuTerumasa TadanoRyo YoshidaJunichiro Shiomi
Published in: Journal of physics. Condensed matter : an Institute of Physics journal (2022)
Machine learning techniques are used to explore the intrinsic origins of the hydrodynamic thermal transport and to find new materials interesting for science and engineering. The hydrodynamic thermal transport is governed intrinsically by the hydrodynamic scale and the thermal conductivity. The correlations between these intrinsic properties and harmonic and anharmonic properties, and a large number of compositional (290) and structural (1224) descriptors of 131 crystal compound materials are obtained, revealing some of the key descriptors that determines the magnitude of the intrinsic hydrodynamic effects, most of them related with the phonon relaxation times. Then, a trained black-box model is applied to screen more than 5000 materials. The results identify materials with potential technological applications. Understanding the properties correlated to hydrodynamic thermal transport can help to find new thermoelectric materials and on the design of new materials to ease the heat dissipation in electronic devices.
Keyphrases
  • machine learning
  • artificial intelligence
  • emergency department
  • transcription factor
  • big data
  • high throughput
  • resistance training
  • risk assessment
  • single molecule
  • adverse drug
  • electronic health record
  • drug induced