Login / Signup

Site-selective peptide bond hydrolysis and ligation in water by short peptide-based assemblies.

Abhishek SinghJanardan ChakrabortySumit PalDibyendu Das
Published in: Proceedings of the National Academy of Sciences of the United States of America (2024)
The evolution of complex chemical inventory from Darwin's nutrient-rich warm pond necessitated rudimentary yet efficient catalytic folds. Short peptides and their self-organized microstructures, ranging from spherical colloids to amyloidogenic aggregates might have played a crucial role in the emergence of contemporary catalytic entities. However, the question of how short peptide fragments had functions akin to contemporary complex enzymes to catalyze cleavage and formation of highly stable peptide bonds that constitute the backbone of all proteins remains an unresolved yet fundamentally important question in terms of the origins of enzymes. We report short-peptide-based spherical assemblies that demonstrated residue-specific cleavage and formation of peptide bonds of diverse peptide-based substrates under aqueous environment. Despite the short sequence length, the assemblies utilized the synergistic collaboration of four residues which included the catalytic triad of extant serine proteases with a nonproteinogenic amino acid (quinone moiety), to facilitate proteolysis, ligation, and a three-step (hydrolysis-ligation-hydrolysis) cascade. Such short-peptide-based catalytic assemblies argue for their candidacy as the earliest protein folds and open up avenues for biotechnological applications.
Keyphrases
  • amino acid
  • minimally invasive
  • drug delivery
  • dna binding
  • cancer therapy