Login / Signup

Single Stage Tandem Mass Spectrometry Assignment of the C-5 Uronic Acid Stereochemistry in Heparan Sulfate Tetrasaccharides using Electron Detachment Dissociation.

Isaac AgyekumChengli ZongGeert-Jan BoonsI Jonathan Amster
Published in: Journal of the American Society for Mass Spectrometry (2017)
The analysis of heparan sulfate (HS) glycosaminoglycans presents many challenges, due to the high degree of structural heterogeneity arising from their non-template biosynthesis. Complete structural elucidation of glycosaminoglycans necessitates the unambiguous assignments of sulfo modifications and the C-5 uronic acid stereochemistry. Efforts to develop tandem mass spectrometric-based methods for the structural analysis of glycosaminoglycans have focused on the assignment of sulfo positions. The present work focuses on the assignment of the C-5 stereochemistry of the uronic acid that lies closest to the reducing end. Prior work with electron-based tandem mass spectrometry methods, specifically electron detachment dissociation (EDD), have shown great promise in providing stereo-specific product ions, such as the B3´ -CO2, which has been found to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) in some HS tetrasaccharides. The previously observed diagnostic ions are generally not observed with 2-O-sulfo uronic acids or for more highly sulfated heparan sulfate tetrasaccharides. A recent study using electron detachment dissociation and principal component analysis revealed a series of ions that correlate with GlcA versus IdoA for a set of 2-O-sulfo HS tetrasaccharide standards. The present work comprehensively investigates the efficacy of these ions for assigning the C-5 stereochemistry of the reducing end uronic acid in 33 HS tetrasaccharides. A diagnostic ratio can be computed from the sum of the ions that correlate to GlcA to those that correlate to IdoA. Graphical Abstract ᅟ.
Keyphrases