Login / Signup

Modified Poly(acrylic acid)-Based Hydrogels for Enhanced Mainstream Removal of Ammonium from Domestic Wastewater.

Heidy CruzBronwyn LaycockEkaterina StrouninaThomas SeviourAdrian OehmenIlje Pikaar
Published in: Environmental science & technology (2020)
Rapid and continuous ammonium adsorption from mainstream coupled with side-stream ammonium recovery and adsorbent regeneration could enable ammonium recovery from domestic wastewater. This study describes the use of tailored poly(acrylic acid)-based (NaPAA) hydrogels as effective sorbents for ammonium removal from domestic wastewater. Modified NaPAA hydrogels having 60% ionization and 4.8 mol % N',N'-methylenebisacrylamide as the cross-linker reduced the overall swelling by 92% from 407 to 31 g/g because of higher cross-linking density. At hydrogel loadings of 2.5-7.5 g/L, the NaPAA hydrogels achieved ammonium concentrations of 8.3 ± 0.6 to 10.1 ± 0.1 mg/L NH4-N, which corresponds to removal efficiencies of 53-77% after 10 min of contact time in real domestic wastewater. At the same hydrogel loadings, the ammonium removal efficiency of NaPAA hydrogels in synthetic wastewater was found to be comparable to that in real sewage (71% vs 69%, respectively), suggesting that the sorption performance is only marginally affected by organic constituents found in domestic wastewater. In addition, the NaPAA hydrogels removed 25-51% ammonium in 10 min from synthetic streams having 200-400% higher ionic strengths than those commonly observed in sewage. Furthermore, simulation studies showed that a discharge concentration of ∼1.9 mg/L NH4-N, well below the commonly applied discharge limits in most regions, can be achieved using mainstream ammonium removal by NaPAA hydrogels followed by biological assimilation from the growth of ordinary heterotrophic organisms.
Keyphrases