Login / Signup

Differences in the intrinsic chondrogenic potential of equine umbilical cord matrix and cord blood mesenchymal stromal/stem cells for cartilage regeneration.

Rodolphe RakicBastien BourdonMagali DemoorStéphane MaddensNathalie SaulnierPhilippe Galera
Published in: Scientific reports (2018)
Umbilical cord blood mesenchymal stromal/stem cells (UCB-MSCs) and umbilical cord matrix MSCs (UCM-MSCs) have chondrogenic potential and are alternative sources to standard surgically derived bone marrow or adipose tissue collection for cartilage engineering. However, the majority of comparative studies explore neonatal MSCs potential only on ISCT benchmark assays accounting for some bias in the reproducibility between in vitro and in clinical studies. Therefore, we characterized equine UCB-MSCs and UCM-MSCs and investigated with particular attention their chondrogenesis potential in 3D culture with BMP-2 + TGF-ß1 in normoxia or hypoxia. We carried out an exhaustive characterization of the extracellular matrix generated by both these two types of MSCs after the induction of chondrogenesis through evaluation of hyaline cartilage, hypertrophic and osteogenic markers (mRNA, protein and histology levels). Some differences in hypoxia sensitivity and chondrogenesis were observed. UCB-MSCs differentiated into chondrocytes express an abundant, dense and a hyaline-like cartilage matrix. By contrast, despite their expression of cartilage markers, UCM-MSCs failed to express a relevant cartilage matrix after chondrogenic induction. Both MSCs types also displayed intrinsic differences at their undifferentiated basal status, UCB-MSCs expressing higher levels of chondrogenic markers whereas UCM-MSCs synthesizing higher amounts of osteogenic markers. Our results suggest that UCB-MSCs should be preferred for ex-vivo horse cartilage engineering. How those results should be translated to in vivo direct cartilage regeneration remains to be determined through dedicated study.
Keyphrases