High-dose ethanol intoxication decreases 1/f neural noise or scale-free neural activity in the resting state.
Ann-Kathrin StockMaik PertermannMoritz MückschelChristian BestePublished in: Addiction biology (2019)
Binge drinking is a frequent phenomenon in many western societies and has been associated with an increased risk of developing alcohol use disorder later in life. Yet, the effects of high-dose alcohol intoxication on neurophysiological processes are still quite poorly understood. This is particularly the case given that neurophysiological brain activity not only contains recurring (oscillatory) patterns of activity, but also a significant fraction of "scale-free" or arrhythmic dynamics referred to as 1/f type activity, pink noise, or 1/f neural noise. Neurobiological considerations suggest that it should be modulated by alcohol intoxication. To investigate this assumption, we collected resting state EEG data from n = 23 healthy young male subjects in a crossover design, where each subject was once tested sober and once tested while intoxicated (mean breath alcohol concentration of 1.1 permille ±0.2). Analyses of the 1/f neural dynamics showed that ethanol intoxication decreased resting state 1/f neural noise, as compared with a sober state. The effects were strongest when the eyes were closed and particularly reliable in the beta frequency band. Given that the dynamics of the beta band have been shown to strongly depend on GABAA receptor neural transmission, this finding nicely aligns with the fact that ethanol increases GABAergic signaling. The study reveals a currently unreported effect of binge drinking on neurophysiological dynamics, which likely revealed a higher sensitivity for ethanol effects than most commonly considered measures of power in neural oscillations. Implications and applicability of these findings are discussed.