Login / Signup

A New Alloying Concept for Low-Density Steels.

Jiří HájekZbyšek NovýLudmila KučerováHana JirkováPavel SalvetrPetr MotyčkaJan HajšmanTereza Bystřická
Published in: Materials (Basel, Switzerland) (2022)
This paper introduces a new alloying concept for low-density steels. Based on model calculations, samples-or "heats"-with 0.7 wt% C, 1.45 wt% Si, 2 wt% Cr, 0.5 wt% Ni, and an aluminium content varying from 5 to 7 wt% are prepared. The alloys are designed to obtain steel with reduced density and increased corrosion resistance suitable for products subjected to high dynamic stress during operation. Their density is in the range from 7.2 g cm -3 to 6.96 g cm -3 . Basic thermophysical measurements are carried out on all the heats to determine the critical points of each phase transformation in the solid state, supported by metallographic analysis on SEM and LM or the EDS analysis of each phase. It is observed that even at very high austenitisation temperatures of 1100 °C, it is not possible to change the two-phase structure of ferrite and austenite. A substantial part of the austenite is transformed into martensite during cooling at 50 °C s -1 . The carbide kappa phase is segregated at lower cooling rates (around 2.5 °C s -1 ).
Keyphrases
  • solid state
  • nuclear factor
  • molecular dynamics
  • molecular dynamics simulations
  • inflammatory response