Extra-mitochondrial mouse frataxin and its implications for mouse models of Friedreich's ataxia.
Liwei WengLaurent LaboureurQingqing WangLili GuoPeining XuLeah GottliebDavid R LynchClementina MesarosIan A BlairPublished in: Scientific reports (2020)
Mature frataxin is essential for the assembly of iron-sulfur cluster proteins including a number of mitochondrial enzymes. Reduced levels of mature frataxin (81-20) in human subjects caused by the genetic disease Friedreich's ataxia results in decreased mitochondrial function, neurodegeneration, and cardiomyopathy. Numerous studies of mitochondrial dysfunction have been conducted using mouse models of frataxin deficiency. However, mouse frataxin that is reduced in these models, is assumed to be mature frataxin (78-207) by analogy with human mature frataxin (81-210). Using immunoaffinity purification coupled with liquid chromatography-high resolution tandem mass spectrometry, we have discovered that mature frataxin in mouse heart (77%), brain (86%), and liver (47%) is predominantly a 129-amino acid truncated mature frataxin (79-207) in which the N-terminal lysine residue has been lost. Mature mouse frataxin (78-207) only contributes 7-15% to the total frataxin protein present in mouse tissues. We have also found that truncated mature frataxin (79-207) is present primarily in the cytosol of mouse liver; whereas, frataxin (78-207) is primarily present in the mitochondria. These findings, which provide support for the role of extra-mitochondrial frataxin in the etiology of Friedreich's ataxia, also have important implications for studies of mitochondrial dysfunction conducted in mouse models of frataxin deficiency.
Keyphrases
- tandem mass spectrometry
- high resolution
- mouse model
- liquid chromatography
- amino acid
- heart failure
- oxidative stress
- gene expression
- mass spectrometry
- early onset
- dna methylation
- simultaneous determination
- cell death
- gas chromatography
- copy number
- case control
- african american
- smoking cessation
- protein protein
- iron deficiency