Login / Signup

Giant Piezoresistive Effect of CdS@C Hybrid Nanobelts for Volatile Real-Time Sensor and Erasable Nonvolatile Memory to Stress.

Zhiyong OuyangQianfei HuangChangsen XuJie ZhaoYanhe XiaoShuijin LeiBaochang Cheng
Published in: ACS applied materials & interfaces (2021)
Here, CdS@C nanohybrid composites, where CdS quantum dots (QDs) are uniformly embedded in carbon micro-/nanobelt matrixes, are synthesized via a combustion synthesis followed by a postvulcanization. In the nanohybrids, trap centers are effectively created by the introduction of QDs and moreover their barrier height and filling level can be effectively modulated through a coupling of externally loaded strain and bias. Thus, a single CdS@C micro-/nanobelt-based two-terminal device can exhibit an ultrahigh real-time response to compressive and tensile strains with a tremendous gauge factor of above 104, high sensitivity, and fast response and recovery. More importantly, the trapped charges can be mechanically excited by stress, and furthermore, the stress-triggered high-resistance state can be well-maintained at room temperature and a relatively low operation bias. However, it can be back to its initial low resistance state by loading a relatively large bias, showing a superior erasable stress memory function with a window of about 103. By an effective construction of trap centers in hybrid composites, not only can an ultrahigh performance of volatile real-time stress sensor be obtained under the synergism of external stress and electric field but also can an outstanding erasable nonvolatile stress memory be successfully realized.
Keyphrases