Login / Signup

Facile Synthesis of Self-Adhesion and Ion-Conducting 2-Acrylamido-2-Methylpropane Sulfonic Acid/Tannic Acid Hydrogels Using Electron Beam Irradiation.

Hee-Woong ParkNam-Gyu JangHyun-Su SeoKiok KwonSeunghan Shin
Published in: Polymers (2023)
Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron beam (E-beam) in a one-pot process at room temperature. TA successfully grafted onto AMPS polymer chains under E-beam irradiation, but higher TA content reduced grafting efficiency and prevented hydrogel formation. Peel strength of the AMPS hydrogel increased proportionally with TA, but cohesive failure and substrate residue occurred above 1.25 phm (parts per 100 g of AMPS) TA. Tensile strength peaked at 0.25 phm TA but decreased below the control value at 1.25 phm. Tensile elongation exceeded 2000% with TA addition. Peel strength varied significantly with substrate type. The wood substrate had the highest peel strength value of 150 N/m, while pork skin had a low value of 11.5 N/m. However, the addition of TA increased the peel strength by over 300%. The ionic conductivity of the AMPS/TA hydrogel increased from 0.9 S/m to 1.52 S/m with TA content, while the swelling ratio decreased by 50% upon TA addition and increased slightly thereafter.
Keyphrases
  • drug delivery
  • wound healing
  • hyaluronic acid
  • room temperature
  • tissue engineering
  • escherichia coli
  • staphylococcus aureus
  • pseudomonas aeruginosa
  • extracellular matrix
  • radiation induced
  • soft tissue