Login / Signup

Engineered disulfide bonds improve thermostability and activity of L-isoleucine hydroxylase for efficient 4-HIL production in Bacillus subtilis 168.

Zhina QiaoMeijuan XuMinglong ShaoYouxi ZhaoMengfei LongTaowei YangXian ZhangShangtian YangHideki NakanishiZhi-Ming Rao
Published in: Engineering in life sciences (2019)
4-Hydroxyisoleucine, a promising drug, has mainly been applied in the clinical treatment of type 2 diabetes in the pharmaceutical industry. l-Isoleucine hydroxylase specifically converts l-Ile to 4-hydroxyisoleucine. However, due to its poor thermostability, the industrial production of 4-hydroxyisoleucine has been largely restricted. In the present study, the disulfide bond in l-isoleucine hydroxylase protein was rationally designed to improve its thermostability to facilitate industrial application. The half-life of variant T181C was 4.03 h at 50°C, 10.27-fold the half-life of wild type (0.39 h). The specific enzyme activity of mutant T181C was 2.42 ± 0.08 U/mg, which was 3.56-fold the specific enzyme activity of wild type 0.68 ± 0.06 U/mg. In addition, molecular dynamics simulation was performed to determine the reason for the improvement of thermostability. Based on five repeated batches of whole-cell biotransformation, Bacillus subtilis 168/pMA5-ido T181C recombinant strain produced a cumulative yield of 856.91 mM (126.11 g/L) 4-hydroxyisoleucine, which is the highest level of productivity reported based on a microbial process. The results could facilitate industrial scale production of 4-hydroxyisoleucine. Rational design of disulfide bond improved l-isoleucine hydroxylase thermostability and may be suitable for protein engineering of other hydroxylases.
Keyphrases