Login / Signup

Non-uniform excitation of the pectoralis major muscle during flat and inclined bench press exercises.

Hélio V CabralLeonardo M L de SouzaLiliam Fernandes de OliveiraTaian Martins Vieira
Published in: Scandinavian journal of medicine & science in sports (2021)
Non-physiological sources may lead to equivocal interpretation on the degree of muscle excitation from electromyograms (EMGs) amplitude. This presumably explains the contradictory findings regarding the effect of the bench press inclination on the pectoralis major (PM) activation pattern. To contend with these issues, herein we used high-density surface EMG to investigate whether different PM regions are excited during the flat and 45° inclined bench press exercises. Single-differential EMGs were collected from 15 regions along the PM cranio-caudal axis, while 8 volunteers performed a set of the flat and 45° inclined bench press at 50% and 70% of 1 repetition maximum. The coefficient of variation, the range of motion, and the cycle duration were calculated from the barbell vertical position to assess the within-subject consistency across cycles. The number of channels detecting the largest EMGs amplitude (active channels), their interquartile range, and their barycentre coordinate were assessed to characterize the EMG amplitude distribution within PM. No significant differences in the range of motion (p > 0.11), cycle duration (p > 0.28), number of active channels (p > 0.05), and interquartile range of active channels (p > 0.39) were observed between the two bench press inclinations. Conversely, the barycentre shifted toward the PM clavicular region (p < 0.001) when the bench press changed from flat to 45°. Our results revealed that greatest EMG amplitudes were concentrated at the PM sternocostal and clavicular heads when exercising in the flat and 45° inclined bench press, respectively. Performing the bench press exercise, with different postures, seem to demand the excitation of different PM regions.
Keyphrases
  • particulate matter
  • air pollution
  • high density
  • polycyclic aromatic hydrocarbons
  • heavy metals
  • water soluble
  • skeletal muscle
  • resistance training
  • energy transfer
  • high resolution
  • high intensity
  • mass spectrometry