Login / Signup

Selection and Optimization of the Parameters of the Robotized Packaging Process of One Type of Product.

Szymon BorysWojciech KaczmarekDariusz Laskowski
Published in: Sensors (Basel, Switzerland) (2020)
The article presents the results of computer simulations related to the selection and optimization of the parameters of robotic packing process of one type of product. Taking the required performance of the robotic production line as a basis, we proposed its configuration using the RobotStudio environment for offline robot programming and virtual controller technology. Next, a methodology for the validation of the adopted assumptions was developed, based on a wide range of input data and a precise representation of the applicable conditions in the packaging process of one type of product. This methodology included test scenarios repeated an appropriate number of times in order to obtain the result data with the desired reliability and repeatability. The main element of the research was a computer simulation of the station based on the Picking PowerPac package. It was assumed that the products on the technological line are generated pseudo-randomly, thus reflecting the real working conditions. The result of the conducted works is the optimal operating speed of industrial robots and conveyors. The developed methodology allows for multifaceted analyses of the key parameters of the technological process (e.g., the number of active robots and their load, speed of conveyors, and station efficiency). We paid special attention to the occurrence of anomalies, i.e., emergency situations in the form of "halting" the operation of chosen robots and their impact on the obtained quality of the industrial process. As a result of the simulations, numerical values were obtained, maximum efficiency, with regard to maximum overflow of items of 5%, for LB algorithm was equal to 1188 completed containers per hour, with conveyors speeds of 270 mm/s and 165 mm/s. This efficiency was possible at robot speeds R1 = 6450 mm/s, R2 = 7500 mm/s, R3 = 6500 mm/s, R4 = 6375 mm/s, R5 = 5500 mm/s, R6 = 7200 mm/s. The ATC algorithm reached efficiency of 1332 containers per hour with less than 5% overflown items, with conveyor speeds of 310 mm/s and 185 mm/s. This efficiency was possible at robot speeds R1 = 7500 mm/s, R2 = 7500 mm/s, R3 = 7200 mm/s, R4 = 7000 mm/s, R5 = 6450 mm/s, R6 = 6300 mm/s. Tests carried out for emergency situations showed that the LB algorithm does not allow for automatic continuation of the process, while the ATC algorithm assured production efficiency of 94% to 98% of the maximum station efficiency.
Keyphrases
  • deep learning
  • machine learning
  • public health
  • healthcare
  • emergency department
  • risk assessment
  • blood pressure
  • heavy metals
  • minimally invasive
  • working memory