Login / Signup

Electronic Spectra of Iron-Sulfur Complexes Measured by 2p3d RIXS Spectroscopy.

Benjamin E Van KuikenAnselm W HahnBrahamjot NayyarChristine E SchiewerSonny C LeeFranc MeyerThomas WeyhermüllerAlessandro NicolaouYi-Tao CuiJun MiyawakiYoshihisa HaradaSerena DeBeer
Published in: Inorganic chemistry (2018)
Iron sulfur (FeS) proteins perform a wide range of biological functions including electron transfer and catalysis. Understanding the complex reactivity of these systems requires a detailed understanding of their electronic properties, which are encoded in the low-energy d-d excited states. Here we demonstrate that iron L-edge 2p3d resonant inelastic X-ray scattering (RIXS) can measure d-d excitation spectra in a series of monomeric, dimeric, and tetrameric FeS model complexes. RIXS provides advantages over traditional optical spectroscopies, because it is capable of measuring low-energy electronic excitations (0-10 000 cm-1) and spin-flip transitions. RIXS reveals the dense manifold of d-d excited states in dimeric [2Fe-2S] and tetrameric [MFe3S4]2+ (M = V or Mo) complexes resulting from covalency and exchange coupling. These results support recent ab initio theoretical predictions that FeS clusters possess a much greater number of low-lying excited states than predicted by model Hamiltonians.
Keyphrases
  • electron transfer
  • energy transfer
  • high resolution
  • density functional theory
  • iron deficiency
  • single molecule
  • computed tomography
  • magnetic resonance
  • quantum dots
  • monte carlo
  • aqueous solution