Login / Signup

Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding.

Xinbo JiangGuoqiang CaiJiangxiao SongYan ZhangBin YuShimin ZhaiKai ChenHao ZhangYihao YuDongming Qi
Published in: Polymers (2023)
The recent advancements in communication technology have facilitated the widespread deployment of electronic communication equipment globally, resulting in the pervasive presence of electromagnetic pollution. Consequently, there is an urgent necessity to develop a thin, lightweight, efficient, and durable electromagnetic interference (EMI) shielding material capable of withstanding severe environmental conditions. In this paper, we propose an innovative and scalable method for preparing EMI shielding films with a tunable sandwich structure. The film possesses a nylon mesh (NM) backbone, with AgNWs serving as the shielding coating and aramid nanofibers (ANFs) acting as the cladding layer. The prepared film was thin and flexible, with a thickness of only 0.13 mm. AgNWs can easily form a conductive network structure, and when the minimum addition amount was 0.2 mg/cm 2 , the EMI SE value reached 28.7 dB, effectively shielding 99.884% of electromagnetic waves and thereby meeting the commercial shielding requirement of 20 dB. With an increase in dosage up to 1.0 mg/cm 2 , the EMI SE value further improved to reach 50.6 dB. The NAAANF film demonstrated remarkable robustness in the face of complex usage environments as a result of the outstanding thermal, acid, and alkali resistance properties of aramid fibers. Such a thin, efficient, and environmentally resistant EMI shielding film provided new ideas for the broad EMI shielding market.
Keyphrases
  • room temperature
  • reduced graphene oxide
  • high frequency
  • gold nanoparticles
  • risk assessment
  • early onset
  • ionic liquid
  • health insurance
  • health risk assessment
  • drug induced
  • air pollution
  • quantum dots
  • life cycle