Login / Signup

Carbon carrier-based rapid Joule heating technology: a review on the preparation and applications of functional nanomaterials.

Xinrui DingZihan HeJiasheng LiXiaolin XuZong-Tao Li
Published in: Nanoscale (2024)
Compared to conventional heating techniques, the carbon carrier-based rapid Joule heating (CJH) method is a new class of technologies that offer significantly higher heating rates and ultra-high temperatures. Over the past few decades, CJH technology has spawned several techniques with similar principles for different application scenarios, including ultra-fast high temperature sintering (UHS), carbon thermal shock (CTS), and flash Joule heating (FJH), which have been widely used in material preparation research studies. Functional nanomaterials are a popular direction of research today, mainly including nanometallic materials, nanosilica materials, nanoceramic materials and nanocarbon materials. These materials exhibit unique physical, chemical, and biological properties, including a high specific surface area, strength, thermal stability, and biocompatibility, making them ideal for diverse applications across various fields. The CJH method is a remarkable approach to producing functional nanomaterials that has attracted attention for its significant advantages. This paper aims to delve into the fundamental principles of CJH and elucidate the efficient preparation of functional nanomaterials with superior properties using this technique. The paper is organized into three sections, each dedicated to introducing the process and characteristics of CJH technology for the preparation of three distinct material types: carbon-based nanomaterials, inorganic non-metallic materials, and metallic materials. We discuss the distinctions and merits of the CJH method compared to alternative techniques in the preparation of these materials, along with a thorough examination of their properties. Furthermore, the potential applications of these materials are highlighted. In conclusion, this paper concludes with a discussion on the future research trends and development prospects of CJH technology.
Keyphrases
  • molecularly imprinted
  • climate change
  • physical activity
  • high resolution
  • mental health
  • high temperature
  • mass spectrometry
  • risk assessment