Injury Risk Predictions in Lunar Terrain Vehicle (LTV) Extravehicular Activities (EVAs): A Pilot Study.
Luis PovedaKaran DevaneMitesh LalwalaF Scott GayzikJoel D StitzelAshley A WeaverPublished in: Annals of biomedical engineering (2024)
Extravehicular activities will play a crucial role in lunar exploration on upcoming Artemis missions and may involve astronauts operating a lunar terrain vehicle (LTV) in a standing posture. This study assessed kinematic response and injury risks using an active muscle human body model (HBM) restrained in an upright posture on the LTV by simulating dynamic acceleration pulses related to lunar surface irregularities. Linear accelerations and rotational displacements of 5 lunar obstacles (3 craters; 2 rocks) over 5 slope inclinations were applied across 25 simulations. All body injury metrics were below NASA's injury tolerance limits, but compressive forces were highest in the lumbar (250-550N lumbar, tolerance: 5300N) and lower extremity (190-700N tibia, tolerance: 1350N) regions. There was a strong association between the magnitudes of body injury metrics and LTV resultant linear acceleration (ρ = 0.70-0.81). There was substantial upper body motion, with maximum forward excursion reaching 375 mm for the head and 260 mm for the chest. Our findings suggest driving a lunar rover in an upright posture for these scenarios is a low severity impact presenting low body injury risks. Injury metrics increased along the load path, from the lower body (highest metrics) to the upper body (lowest metrics). While upper body injury metrics were low, increased body motion could potentially pose a risk of injury from flail and occupant interaction with the surrounding vehicle, suit, and restraint hardware.